Last year we gave thanks for the Lagrangian of the Standard Model of Particle Physics. This year, we give thanks for Hubble’s Law, the linear relationship between velocity and distance of faraway galaxies:
(We could be sticklers and call it the “effective velocity as inferred from the cosmological redshift,” but it’s a holiday and we’re in an expansive mood.) Here is the original plot, from Hubble 1929:
And here is a modern version, from Riess, Press and Kirshner 1996 (figure from Ned Wright’s cosmology tutorial):
Note that Hubble’s distance scale goes out to about two million parsecs, whereas the modern one goes out to 500 million parsecs. Note also that Hubble mis-labeled the vertical axis, expressing velocity in units of kilometers, but he discovered the expansion of the universe so we can forgive him. And yes, the link above is to Hubble’s original paper in the Proceedings of the National Academy of Sciences. Only 146 citations! He’d never get tenure these days. (Over 1000 citations for Freedman et al., the final paper from the Hubble Key Project to measure H0.)
Hubble was helped along in his investigations by Milton Humason; together they wrote a longer follow-up paper. (Some habits don’t change.) Here is a sobering sentence from an article about Humason: “During the period from 1930 until his retirement in 1957, he measured the velocities of 620 galaxies.” These days projects measure millions of velocities. So let’s give thanks for better telescopes, CCD cameras, and software, while we’re at it.
Hubble’s Law is an empirical fact about photons we receive in our telescopes, but it’s implications are profound: the universe is expanding. This discovery marks a seismic shift in how we think about the cosmos, as profound as the Copernican displacement away from the center. It was so important, Einstein felt the need to visit Hubble on Mt. Wilson and check that he wasn’t making any mistakes.
Connect with us